5 research outputs found

    Application of evolutionary computation techniques in emerging optimization problems in 5G and beyond wireless systems

    Get PDF
    Tese (doutorado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduação em Engenharia Elétrica, Florianópolis, 2021.Os sistemas comunicação sem fio 5G e além (B5G, do inglês Beyong 5G) permitirão a plena implantação de aplicações existentes, como carros autônomos, redes de sensores massivas e casas inteligentes. Para tornar essas aplicações possíveis, requisitos rigorosos, como alta eficiência espectral e ultra baixa latência de comunicação, devem ser atendidos. Para atender a esses requisitos, diferentes tecnologias-chave estão em desenvolvimento, como comunicações de Ondas Milimétricas (mmWave, do inglês Millimeter Wave) e Superfícies Refletivas Inteligentes (IRS, do inglês Intelligent Reflecting Surfaces). As comunicações mmWave têm atraído grande interesse devido ao abundante espectro de frequência disponível, ao contrário das bandas congestionadas adotadas nas redes 4G. No entanto, as bandas mmWave apresentam características de propagação desfavoráveis. Para superar tais problemas de propagação, o uso de beamforming altamente direcional é uma solução eficaz. Além disso, recentemente, uma tecnologia de baixo custo e alta eficiência energética denominada IRS, uma meta-superfície equipada com um grande número de elementos passivos de baixo custo, capaz de refletir o sinal incidente com uma dada mudança de fase/amplitude, foi desenvolvida para otimizar a capacidade da rede. Implantando densamente IRSs em redes de comunicação sem fio e coordenando seus elementos de maneira inteligente, os canais sem fio entre o transmissor e o receptor podem ser intencional e deterministicamente controlados para melhorar a qualidade do sinal no receptor. Embora essas tecnologias tenham inúmeros benefícios para o desempenho do sistema, elas apresentam muitos desafios em sua implantação. Mais especificamente, embora as bandas mmWave permitam considerar o uso de beamforming altamente direcional tanto na BS quanto no UE, isto pode representar um desafio para o processo de Acesso Inicial (IA, do inglês Initial Access) pois, uma vez que a transmissão omnidirecional não pode ser aplicada, devido ao seu baixo ganho de potência e SNR recebido, a duração geral do IA pode ser muito longa. O atraso causado pela busca direcional deve ser pequeno para atender a alguns dos requisitos das redes B5G como baixa latência de ponta-a-ponta. Além disso, apesar da capacidade das IRSs de controlar os canais sem fio, o projeto do beamforming na BS e na IRS é um problema desafiador devido à necessidade de estimar a informação de estado do canal (CSI, do inglês Channel State Information) de todos os links do sistema. No entanto, para estimar o CSI entre a IRS e a BS ou entre a IRS e o UE, cada elemento da IRS precisa ser equipado com uma cadeia de radiofrequência (RF, do inglês Radio Frequency), o que aumenta consideravelmente o custo e o consumo de energia do sistema e vai contra algumas das principais vantagens de utilizar IRSs em sistemas de comunicação sem fio. Portanto, motivados pelos problemas emergentes acima, nesta tese, pretendemos desenvolver novos métodos baseados em técnicas de Computação Evolutiva tais como, Algoritmos Genéticos (GA, do inglês Genetic Algorithm) e Otimização por Enxame de Partículas (PSO, do inglês Particle Swarm Optimization), visando resolver o problema de IA e realizar o projeto do beamforming na BS e IRS sem conhecimento prévio do CSI na BS. Os resultados obtidos nesta tese mostram que os métodos desenvolvidos podem reduzir consideravelmente o atraso e alcançar um desempenho próximo ao ótimo no problema de projeto do beamforming na BS e IRS com sobrecarga de treinamento reduzida.Abstract: Beyond 5G (B5G) wireless systems will enable the deployment of demanding applications such as autonomous cars, massive sensor networks, and smart homes. To make these applications possible, stringent requirements such as improved spectrum efficiency and low communication latency must be fulfilled. In order to meet these requirements, different key technologies are in development such as millimeter Wave (mmWave) communications and Intelligent Reflecting Surfaces (IRS). The mmWave communications have attracted great interest due to the abundant available spectrum, unlike the congested bands adopted in the 4G networks. However, the mmWave bands present poor propagation characteristics. To overcome these propagation issues, the use of highly directional beamforming is an effective solution. In addition, recently, an energy-efficient and low-cost technology named IRS, which is a meta-surface equipped with a large number of low-cost passive elements, capable of reflecting the incident signal with a given phase/amplitude shift, was developed to increase the network capacity. By densely deploying IRSs in wireless communication networks and intelligently coordinating their elements, the wireless channels between the transmitter and receiver can be intentionally and deterministically controlled to improve the signal quality at the receiver. Although these technologies have uncountable benefits for the system performance, they present many challenges in their deployment. More specifically, although the mmWave bands allow to consider highly directional beamforming at the BS and UE, this can be challenging for the Initial Access (IA) process. Since omnidirectional transmission may not be applied, due to its low power gain and received SNR, the overall duration of IA can be very long. The delay caused by directional search must be small to meet some of the B5G requirements for low end-to-end latency. Moreover, despite the capacity of controlling the wireless channels of the IRSs, designing the beamforming at the BS and at the IRS is a challenging problem due to the necessity of estimating the channel state information (CSI) of all system links. However, to estimate the CSI between IRS and BS or between IRS and UE, each element of the IRS needs to be equipped with one radio-frequency (RF) chain which greatly increases the cost and energy consumption of the system and goes against some of the original advantages of using an IRS. Therefore, motivated by the above emerging problems, in this thesis, we intend to develop new methods based on Evolutionary Computation techniques, i.e., Genetic Algorithms (GA) and Particle Swarm Optimization (PSO), to solve the IA problem and to design the beamforming at the BS and IRS without CSI. Results show that the developed methods can reduce the IA delay and achieve a close-to-optimal performance in the IRS beamforming problem with reduced training overhead

    Optimal traffic load allocation for Aloha-based IoT LEO constellations

    No full text
    Abstract The deployment of satellite networks is key to providing global wireless connectivity for the Internet of Things (IoT). In this line, we consider a cluster of IoT devices served by a constellation of low-Earth-orbit (LEO) satellites, while slotted Aloha is used as a medium-access-control (MAC) technique in the uplink. To characterize the channel, we employ an ON–OFF fading channel model that estimates the quality of the links between the cluster of IoT devices and the LEO satellites within the constellation, by taking into account their relative positions. Since each relative position of the constellation with respect to the cluster of IoT devices leads to a different throughput for a given traffic load, we propose a novel traffic load distribution strategy based on successive convex approximation (SCA) to maximize the system throughput. The method adequately allocates the traffic load among the different constellation positions with respect to the IoT cluster. Finally, the results show that the proposed method outperforms other recently proposed strategies based on heuristics for traffic load allocation, while it also achieves a stable nonzero throughput even for large traffic loads

    Emerging MIMO Technologies for 6G Networks

    No full text
    The demand for wireless connectivity has grown exponentially over the last years. By 2030 there should be around 17 billion of mobile-connected devices, with monthly data traffic in the order of thousands of exabytes. Although the Fifth Generation (5G) communications systems present far more features than Fourth Generation (4G) systems, they will not be able to serve this growing demand and the requirements of innovative use cases. Therefore, Sixth Generation (6G) Networks are expected to support such massive connectivity and guarantee an increase in performance and quality of service for all users. To deal with such requirements, several technical issues need to be addressed, including novel multiple-antenna technologies. Then, this survey gives a concise review of the main emerging Multiple-Input Multiple-Output (MIMO) technologies for 6G Networks such as massive MIMO (mMIMO), extremely large MIMO (XL-MIMO), Intelligent Reflecting Surfaces (IRS), and Cell-Free mMIMO (CF-mMIMO). Moreover, we present a discussion on how some of the expected key performance indicators (KPIs) of some novel 6G Network use cases can be met with the development of each MIMO technology

    Emerging MIMO Technologies for 6G Networks

    No full text
    The demand for wireless connectivity has grown exponentially over the last years. By 2030 there should be around 17 billion of mobile-connected devices, with monthly data traffic in the order of thousands of exabytes. Although the Fifth Generation (5G) communications systems present far more features than Fourth Generation (4G) systems, they will not be able to serve this growing demand and the requirements of innovative use cases. Therefore, Sixth Generation (6G) Networks are expected to support such massive connectivity and guarantee an increase in performance and quality of service for all users. To deal with such requirements, several technical issues need to be addressed, including novel multiple-antenna technologies. Then, this survey gives a concise review of the main emerging Multiple-Input Multiple-Output (MIMO) technologies for 6G Networks such as massive MIMO (mMIMO), extremely large MIMO (XL-MIMO), Intelligent Reflecting Surfaces (IRS), and Cell-Free mMIMO (CF-mMIMO). Moreover, we present a discussion on how some of the expected key performance indicators (KPIs) of some novel 6G Network use cases can be met with the development of each MIMO technology
    corecore